
General Ellipse Packings in an Optimized Circle

Using Embedded Lagrange Multipliers

Frank J. Kampas a, János D. Pintér b, c, Ignacio Castillo d,*

a Physicist at Large Consulting LLC, Ambler, PA, USA

b Pintér Consulting Services Inc. c Sobey School of Business, Saint Mary’s University, Halifax, NS, Canada
d Lazaridis School of Business and Economics, Wilfrid Laurier University, Waterloo, ON, Canada

* Corresponding author. E-mail address: icastillo@wlu.ca

Abstract

The general ellipse packing problem is to find a non-overlapping arrangement of 𝑛

ellipses with (in principle) arbitrary size and orientation parameters inside a given type of

container set. Here we consider the general ellipse packing problem with respect to an

optimized circle container with minimal radius. Following the review of selected topical

literature, we introduce a new model formulation approach based on using embedded

Lagrange multipliers. This optimization model is implemented using the computing

system Mathematica: we present illustrative numerical results using the LGO global-local

optimization software package linked to Mathematica. Our study demonstrates the

applicability of the embedded Lagrange multipliers based modeling approach combined

with global optimization tools to solve challenging ellipse packing problems.

1 Introduction and Review of Related Work

1.1 Circle Packings

In a general setting, a circle packing is an optimized non-overlapping arrangement of 𝑛

arbitrary size circles inside a container (such as a circle, square or a general rectangle).

The quality of the packing is typically measured by the size (area) of the container. The

circle packing problem – in particular the case of identical circles – has received

considerable attention as reflected by the literature. Due to the special (inherently

symmetric) structure of this problem-type, studies dealing with identical circle packings

often aim to prove the optimality of the configurations found, either theoretically or with

the help of rigorous computational approaches: consult e.g. Szabó et al. (2001, 2005,

2007), Markót (2005) with numerous related further references therein.

The arbitrary sized circle packing problem is a significant generalization of the uniform

sized case, since now each packed circle can have a different (in principle, arbitrary)

radius. Generally speaking, provably optimal configurations can be found only to very

small model instances (𝑛 ≤ 4). Therefore studies dealing with general circle packings

typically introduce and apply efficient generic or tailored global scope solution strategies,

but without the proven optimality of the results obtained: cf. e.g. Riskin et al. (2003),

Castillo and Sim (2004), Pintér and Kampas (2005, 2006a, b), Kampas and Pintér (2006),

Addis et al. (2008), Castillo et al. (2008), Grosso et al. (2010).

Without going into further details related to circle packings, we refer to Castillo et al.

(2008) and to Hifi and M’Hallah (2009) for reviews of both uniform and arbitrary sized

circle packing problems and applications. Let us also remark that more general – and

often very challenging – packing problem-types with a range of important real-world

applications are discussed in the edited volume (Fasano and Pintér, 2015).

1.2 Ellipse Packings

The ellipse packing problem has received relatively little attention in the literature so far.

Finding high quality (globally optimized) ellipse packings is a difficult computational

problem, especially when dealing with packing ellipses of arbitrary size and orientation.

The key challenge is the modeling and enforcement of the no-overlap constraints. Let us

note here that measuring the overlap between two ellipses depends also on the orientation

of the ellipses, in addition to the location of their centers.

Next, we briefly review some of the related literature. Even if not all works cited here are

aimed at handling the exact same problem-type addressed by our present study, these

works illustrate the significant difficulty of similar packings.

First we mention an exact result that deals with the densest packing of just two non-

overlapping congruent ellipses in a square. In this case, for all real numbers 𝑟 in [0,1],
Gensane and Honvault (2014) analytically describe the densest packing of two ellipses

with aspect ratio 𝑟.

Birgin et al. (2013) study the problem of packing sets of identical circles within an

ellipse. The basic challenge here is the closed formula based calculation to compute the

distance of an arbitrary point to the boundary of the containing ellipse. The authors note

that – even when considering only identical size circles – the resulting models are

challenging nonlinear programming problems. In order to seek for globally optimized

solutions, the authors propose stochastic multi-start and lattice-based search strategies.

Litvinchev et al. (2015) find optimized packings of “circular-like” objects – including

circles, ellipses, rhombuses, and octagons – in a rectangular container. The authors

propose a linear 0-1 model formulation based on a grid that approximates the container,

and then consider the nodes of the grid as potential positions for assigning centers of the

objects. The resulting binary linear programming problem is solved using the commercial

software package CPLEX. Numerical results related to packing circles, ellipses,

rhombuses, and octagons are presented. Let us point out that, given the grid

approximation of the container, this approach can only handle the packing of uniform

sized and orthogonally oriented ellipses inside a container: this is clearly a limitation in

the context of our present study.

Galiev and Lisafina (2013) study the problem of packing uniform sized and orthogonally

oriented ellipses inside a rectangular container. Similarly to Litvinchev et al. (2015),

linear 0-1 model formulations are proposed using a grid that approximates the container.

Two special cases regarding the orientation of the ellipses are considered: i) the major

axes of all the ellipses are parallel to the 𝑥 or 𝑦 axis, and ii) the major axes of some of the

ellipses are parallel to the 𝑥 axis and others to the 𝑦 axis. A heuristic algorithm based on

the linear model formulations is proposed and numerical results are presented.

Kallrath and Rebennack (2014) address the problem of packing ellipses of arbitrary size

and orientation into an optimized rectangle (of minimal area). The packing model

formulation is introduced as a cutting problem. The key idea is to use separating lines to

ensure that the ellipses do not overlap with each other. For problem-instances with 𝑛 ≤
14 ellipses, the authors present feasible solutions that are globally optimal subject to the

finite arithmetic precision of the global solvers at hand. However – according to these

authors – for 𝑛 > 14 ellipses none of the local or global nonlinear optimization solvers

available in conjunction with the GAMS modeling environment could compute a feasible

solution. Therefore they propose heuristic approaches, in which the ellipses are added

sequentially to an optimized rectangular container: this approach allows computing

visibly high-quality solutions for up to 100 ellipses.

Uhler and Wright (2013) study the problem of packing arbitrary sized ellipsoids into an

ellipsoidal container so as to minimize a measure of overlap between ellipsoids. A model

formulation and two local scope solution approaches are discussed: one approach for the

general case, and a simpler approach for the special case in which all ellipsoids are in fact

spheres. The authors describe and illustrate their computational experience using

chromosome organization in the human cell nucleus as the motivating application.

Based also on the illustrative references cited, we argue that ellipse packings have a

number of practical applications, with a view also towards the future use of such models.

Here we study the non-overlapping packing of ellipses with arbitrary size and orientation

parameters inside a circular container: our objective is to minimize the radius of the

container circle.

Packing ellipses into a circle requires i) the determination of the maximal distance from

the center of the circular container to each ellipse (boundary), and ii) the finding of the

minimal distance between all pairs of the ellipses. The first requirement is necessary to

determine the radius of the circumscribing circle (which is then to be minimized). The

second requirement is necessary to prevent the ellipses from overlapping. Explicit

analytical formulas for these quantities – if they exist – would be complex. Therefore the

approach taken here involves determining those quantities by embedding optimization

calculations (using Lagrange multipliers) into the overall optimization strategy. In this

Lagrangian setting, the optimization strategy to find the radius of the circumscribing

circle and to prevent ellipse overlap proceeds simultaneously towards meeting both

requirements. This approach allows us to solve the minimization problem numerically

with a single call to a suitable global optimization procedure. While – analogously to the

significantly easier case of general circle packings – we cannot guarantee the theoretical

(provable) optimality of the ellipse configurations found, our work leads to visibly good

quality ellipse packings. Packing three- or higher-dimensional ellipsoids can be seen as

an immediate extension of the two-dimensional problem statement considered here.

Other related model-types and solution strategies will be discussed in our forthcoming

studies.

2 Model Formulation

As stated above, the objective of the general ellipse packing problem studied here is to

minimize the radius of the circumscribing circle. The inputs to the optimization problem

are the semi-major and semi-minor axes of the ellipses to be packed. The primary

decision variables are the radius of the circumscribing circle, and the centre position and

orientation of each of the packed ellipses. Secondary (induced) variables are the positions

of the points on the ellipses most distant from the center of the circumscribing circle, and

the positions of the points on one of each pair of ellipses which minimizes the value of

the equation describing the other ellipse. Other secondary variables are the embedded

Lagrange multipliers used to determine those points. Note that all secondary variables are

implicitly determined by the primary decision variables.

The constraints fall into two groups. The first constraint group uses the secondary

variables to represent the constraints that keep the ellipses inside the circumscribing

circle and prevent them from overlapping. The second constraint group represents the

equations generated by the embedded Lagrange multiplier conditions. In our global

optimization strategy, the calculations for finding the radius of the circumscribing circle

and for preventing ellipse overlaps proceed simultaneously with the minimization of the

radius of the circumscribing circle, rather than being performed to completion at each

step towards the minimization of the radius.

Next, we present our formal model. Equation 𝑒𝑙𝑒𝑞(𝑎, 𝑏, 𝑥𝑐, 𝑦𝑐, 𝜃)(𝑥, 𝑦) describes an

ellipse with semi-major and semi-minor axes 𝑎 and 𝑏, centered at {𝑥𝑐, 𝑦𝑐}, and rotated

counterclockwise by angle 𝜃. More specifically, 𝑒𝑙𝑒𝑞(𝑎, 𝑏, 𝑥𝑐, 𝑦𝑐, 𝜃)(𝑥, 𝑦) is negative for

all points (𝑥, 𝑦) inside the ellipse, zero for all points on the ellipse boundary, and positive

for all points outside the ellipse. Note that 𝑎 and 𝑏 are given input parameters, while

(𝑥𝑐, 𝑦𝑐) and 𝜃 are primary decision variables for each ellipse 𝑖: the latter will be denoted

by (𝑥𝑐𝑖, 𝑦𝑐𝑖) and 𝜃𝑖 for 𝑖 = 1, … , 𝑛.

Equation 𝑒𝑙𝑒𝑞(𝑎, 𝑏, 𝑥𝑐, 𝑦𝑐, 𝜃)(𝑥, 𝑦) can be obtained by transforming the equation of a

circle with radius 1, centered at (0,0), as follows.

 𝑒𝑙𝑒𝑞(𝑎, 𝑏, 𝑥𝑐, 𝑦𝑐, 𝜃)(𝑥, 𝑦)

= (
cos (𝜃) (𝑥 − 𝑥𝑐)

𝑎
+

sin (𝜃) (𝑦 − 𝑦𝑐)

𝑎
)

2

+ (
cos (𝜃) (𝑦 − 𝑦𝑐)

𝑏
−

sin (𝜃) (𝑥 − 𝑥𝑐)

𝑏
)

2

− 1

(1)

Note that in (1) the coordinate system is rotated by an angle of – 𝜃, which is equivalent to

rotating the ellipse by an angle 𝜃 around its centre.

By assumption, the circumscribing circle is centered at the origin, so its radius must be at

least the maximum value of √𝑥2 + 𝑦2 that can be obtained for all points (𝑥, 𝑦) of the

packed ellipses. The point on an ellipse with the maximum value of 𝑥2 + 𝑦2 is clearly the

same as the point which maximizes √𝑥2 + 𝑦2 , and it can be determined using the

Lagrange multiplier method by differentiating 𝑥2 + 𝑦2 = 𝜆 ∙ 𝑒𝑙(𝑥, 𝑦) with respect to 𝑥, 𝑦,

and 𝜆 , where 𝑒𝑙(𝑥, 𝑦) represents the ellipse 𝑒𝑙𝑒𝑞(𝑎, 𝑏, 𝑥𝑐, 𝑦𝑐, 𝜃)(𝑥, 𝑦) . Applying this

method, we obtain the equations

{

2𝑥 = 𝜆 ∙ 𝑒𝑙(1,0)(𝑥, 𝑦)

2𝑦 = 𝜆 ∙ 𝑒𝑙(0,1)(𝑥, 𝑦)

𝑒𝑙(𝑥, 𝑦) = 0

},

(2)

where 𝑒𝑙(1,0)(𝑥, 𝑦) is the derivative of 𝑒𝑙(𝑥, 𝑦) with respect to 𝑥 and 𝑒𝑙(0,1)(𝑥, 𝑦) is the

derivative of 𝑒𝑙(𝑥, 𝑦) with respect to 𝑦.

The next equation follows simply from the requirement that the point sought lies on the

ellipse boundary. Note that 𝜆 can be eliminated from the first two equations: hence, we

obtain

 𝑦 ∙ 𝑒𝑙(1,0)(𝑥, 𝑦) = 𝑥 ∙ 𝑒𝑙(0,1)(𝑥, 𝑦). (3)

Since the slope of the ellipse boundary at point (𝑥, 𝑦) is given by

𝑑𝑦

𝑑𝑥
=

𝜕𝑒𝑙(𝑥, 𝑦)
𝜕𝑥

⁄

𝜕𝑒𝑙(𝑥, 𝑦)
𝜕𝑦⁄

=
𝑒𝑙(1,0)(𝑥, 𝑦)

𝑒𝑙(0,1)(𝑥, 𝑦)
=

𝑥

𝑦

(4)

from equation (3), the slope of the line from (0,0) to (𝑥, 𝑦), which is 𝑦/𝑥 , is the inverse

of the slope of the ellipse at the point most distant from the origin. In other words, the

line from the origin to the point on the ellipse most distant from the origin is

perpendicular to the ellipse boundary at that point, as one might expect.

It is useful to setup equations for the derivatives of the ellipse equation with respect to 𝑥

and 𝑦. These derivatives are:

 𝑒𝑙𝑒𝑞𝑑𝑥(𝑎, 𝑏, 𝑥𝑐, 𝑦𝑐, 𝜃)(𝑥, 𝑦)

=
2

𝑎2𝑏2
(𝑏2(𝑥 − 𝑥𝑐) cos(𝜃)2

− (𝑎2 − 𝑏2)(𝑦 − 𝑦𝑐) cos(𝜃) sin(𝜃)
+ 𝑎2(𝑥 − 𝑥𝑐) sin(𝜃)2);

(5)

 𝑒𝑙𝑒𝑞𝑑𝑦(𝑎, 𝑏, 𝑥𝑐, 𝑦𝑐, 𝜃)(𝑥, 𝑦) =
2

𝑎2𝑏2
(𝑎2(𝑦 − 𝑦𝑐) cos(𝜃)2 −

(𝑎2 − 𝑏2)(𝑥 − 𝑥𝑐) cos(𝜃) sin(𝜃) + 𝑏2(𝑦 − 𝑦𝑐) sin(𝜃)2).

(6)

The equations shown below are used to find the points that are closest and most distant

from the origin. To obtain the most distant point, 𝜆 must be positive, since increasing the

size of the ellipse increases the value of the maximum distance only, assuming that the

center of the circle (0,0) does not lie inside the ellipse. If this is the case, then other

ellipses outside that particular ellipse will determine the radius of the container circle.

{

2𝑥 = 𝜆 ∙ 𝑒𝑙𝑒𝑞𝑑𝑥(𝑎, 𝑏, 𝑥𝑐, 𝑦𝑐, 𝜃)(𝑥, 𝑦)

2𝑦 = 𝜆 ∙ 𝑒𝑙𝑒𝑞𝑑𝑦(𝑎, 𝑏, 𝑥𝑐, 𝑦𝑐, 𝜃)(𝑥, 𝑦)

𝑒𝑙𝑒𝑞(𝑎, 𝑏, 𝑥𝑐, 𝑦𝑐, 𝜃)(𝑥, 𝑦) = 0.

}

(7)

For example, consider the ellipse defined by 𝑒𝑙𝑒𝑞(1.25,0.75,1,2, 𝜋/3)(𝑥, 𝑦). The point

on it that is most distant from the origin can be found solving equations (7): the numerical

solution is (𝑥, 𝑦) = (1.608,3.092), with corresponding distance value 3.485.

In the optimization strategy, the requirement on the (positive) sign of 𝜆 will be enforced

by setting search bounds, rather than specifying a constraint. Moreover, the value of the

maximum distance from the origin is obtained by evaluating √𝑥2 + 𝑦2 at the solution of

equation (7). Note that equation (7) may fail, if the ellipse contains the origin. To handle

this potential issue, constraints are added to the optimization strategy in order to keep the

maximum distance point further from the origin than the smaller of the semi-major or

semi-minor axis of the ellipse in question. For illustration, a packed ellipse, a possible

circumscribing circle, and the point of their intersection are shown in Figure 1.

Figure 1. A packed ellipse, the circumscribing circle, and their intersection point

Proceeding now to prevent ellipse overlaps, all pairs of packed ellipses are prevented

from overlapping by requiring that the minimum value of the ellipse equation for the first

ellipse (say ellipse 𝑖), for any point on the second ellipse (say ellipse 𝑗), is greater than a

judiciously set (sufficiently small) 𝜀 ≥ 0. This requirement will also be accomplished

using the embedded Lagrange multiplier method.

{

𝑒𝑙𝑖
(1,0)(𝑥, 𝑦) = 𝜆 ∙ 𝑒𝑙𝑗

(1,0)(𝑥, 𝑦)

𝑒𝑙𝑖
(0,1)(𝑥, 𝑦) = 𝜆 ∙ 𝑒𝑙𝑗

(0,1)(𝑥, 𝑦)

𝑒𝑙𝑗(𝑥, 𝑦) = 0.

}

(8)

0 1 2 3 4

0

1

2

3

4

The last equation type is the requirement that the point lies on ellipse 𝑗. Eliminating 𝜆

from the first two equations, we obtain

 𝑒𝑙𝑖
(0,1)(𝑥, 𝑦) ∙ 𝑒𝑙𝑗

(1,0)(𝑥, 𝑦) = 𝑒𝑙𝑗
(0,1)

(𝑥, 𝑦) ∙ 𝑒𝑙𝑖
(1,0)(𝑥, 𝑦). (9)

Note that, as expected, the slope of the expanded ellipse 𝑖 equals the slope of ellipse 𝑗 at

the point on ellipse 𝑗 that minimizes or maximizes the value of the function describing

ellipse 𝑖.

The equations shown below determine the point on ellipse 𝑗 that maximizes or minimizes

the value of the function describing ellipse 𝑖 . In the case considered here, 𝜆 must be

negative to obtain the minimum. As indicated before, in the optimization strategy the

requirement on the sign of 𝜆 will be enforced by setting its search bounds rather than

specifying an additional constraint.

{

𝑒𝑙𝑒𝑞𝑑𝑥(𝑎𝑖, 𝑏𝑖 , 𝑥𝑐𝑖, 𝑦𝑐𝑖, 𝜃𝑖)(𝑥, 𝑦) = 𝜆 ∙ 𝑒𝑙𝑒𝑞𝑑𝑥(𝑎𝑗 , 𝑏𝑗 , 𝑥𝑐𝑗 , 𝑦𝑐𝑗, 𝜃𝑗)(𝑥, 𝑦)

𝑒𝑙𝑒𝑞𝑑𝑦(𝑎𝑖, 𝑏𝑖 , 𝑥𝑐𝑖, 𝑦𝑐𝑖, 𝜃𝑖)(𝑥, 𝑦) = 𝜆 ∙ 𝑒𝑙𝑒𝑞𝑑𝑦(𝑎𝑗, 𝑏𝑗 , 𝑥𝑐𝑗 , 𝑦𝑐𝑗 , 𝜃𝑗)(𝑥, 𝑦)

𝑒𝑙𝑒𝑞(𝑎𝑗, 𝑏𝑗 , 𝑥𝑐𝑗 , 𝑦𝑐𝑗 , 𝜃𝑗)(𝑥, 𝑦) = 0.

}

(10)

For example, consider the ellipses defined by 𝑒𝑙𝑒𝑞𝑖(1.25,0.75,1,2, 𝜋/3)(𝑥, 𝑦) and

𝑒𝑙𝑒𝑞𝑗(1.5,0.83, −0.5,1, 𝜋/4)(𝑥, 𝑦). The overlap (value of 𝑒𝑙𝑒𝑞𝑖) between the ellipses is

−0.886 with (𝑥, 𝑦) = (0.701,1.777): this can be found by solving equation (10). Figure

2 shows this overlapping configuration.

Figure 2. Two overlapping ellipses

As another example, consider now the ellipses defined by 𝑒𝑙𝑒𝑞𝑖(1.25,0.75, −1, −2, 𝜋/
3)(𝑥, 𝑦) and 𝑒𝑙𝑒𝑞𝑗(1.5,0.83, −0.5,1, 𝜋/4)(𝑥, 𝑦). The non-overlapping value between the

ellipses is 1.84 with (𝑥, 𝑦) = (−0.758, −0.141): again, this can be found by solving

equation (10). Figure 3 shows this non-overlapping configuration.

Figure 3. Two non-overlapping ellipses

In the overall optimization strategy, 𝜆𝑖 are the Lagrange multpliers in the equations for

finding the point (𝑥𝑚𝑖, 𝑦𝑚𝑖) on ellipse 𝑖 that is most distant from the origin. The

calculation is restricted to maximization by restricting the sign of 𝜆𝑖 to be postive. The

square of the radius of the circumscribing circle satisfies the relation 𝑟𝑐2 ≥ 𝑥𝑚𝑖
2 + 𝑦𝑚𝑖

2

for all 𝑖. In addition, 𝜆𝑖,𝑗 are the Lagrange multpliers in the equations for finding the point

(𝑥𝑗,𝑖, 𝑦𝑗,𝑖) on ellipse 𝑗 that minimizes the value of the equation describing ellipse 𝑖. This

calculation is restricted to minimization by requiring the value of 𝜆𝑖,𝑗 to be negative.

Finally, there are the constraints that prevent ellipse 𝑖 from overlapping with ellipse 𝑗, by

requiring the value of the equation describing ellipse 𝑖 on the point on ellipse 𝑗 that

minimizes that value to be at least 𝜀. Values of 𝜀 = 0.00, 1E-6, and 0.01 have been used

successfully: hence, the model and the optimization solver are not too sensitive to the

choice of this parameter.

To summarize the model development steps described above, we obtain the following

optimization model for the case of 𝑛 ellipses.

minimize 𝑟𝑐 (11)

subject to 𝑟𝑐2 ≥ 𝑥𝑚𝑖
2 + 𝑦𝑚𝑖

2 for 𝑖 = 1, … , 𝑛

 𝑥𝑚𝑖
2 + 𝑦𝑚𝑖

2 ≥ min (𝑎𝑖, 𝑏𝑖)
2 for 𝑖 = 1, … , 𝑛

 2 ∙ 𝑥𝑚𝑖

= 𝜆𝑖 ∙ 𝑒𝑙𝑒𝑞𝑑𝑥(𝑎𝑖, 𝑏𝑖, 𝑥𝑐𝑖, 𝑦𝑐𝑖, 𝜃𝑖)(𝑥𝑚𝑖, 𝑦𝑚𝑖)

for 𝑖 = 1, … , 𝑛

 2 ∙ 𝑦𝑚𝑖

= 𝜆𝑖 ∙ 𝑒𝑙𝑒𝑞𝑑𝑦(𝑎𝑖, 𝑏𝑖 , 𝑥𝑐𝑖, 𝑦𝑐𝑖, 𝜃𝑖)(𝑥𝑚𝑖, 𝑦𝑚𝑖)

for 𝑖 = 1, … , 𝑛

 𝑒𝑙𝑒𝑞(𝑎𝑖, 𝑏𝑖, 𝑥𝑐𝑖, 𝑦𝑐𝑖, 𝜃𝑖)(𝑥𝑚𝑖, 𝑦𝑚𝑖) = 0 for 𝑖 = 1, … , 𝑛

 𝑒𝑙𝑒𝑞𝑑𝑥(𝑎𝑖, 𝑏𝑖, 𝑥𝑐𝑖, 𝑦𝑐𝑖, 𝜃𝑖)(𝑥𝑗,𝑖, 𝑦𝑗,𝑖)

= 𝜆𝑗,𝑖 ∙ 𝑒𝑙𝑒𝑞𝑑𝑥(𝑎𝑗, 𝑏𝑗 , 𝑥𝑐𝑗, 𝑦𝑐𝑗, 𝜃𝑗)(𝑥𝑗,𝑖, 𝑦𝑗,𝑖)

for 𝑖 = 1, … , 𝑛 − 1

𝑗 = 𝑖 + 1, … , 𝑛

 𝑒𝑙𝑒𝑞𝑑𝑦(𝑎𝑖, 𝑏𝑖, 𝑥𝑐𝑖 , 𝑦𝑐𝑖, 𝜃𝑖)(𝑥𝑗,𝑖, 𝑦𝑗,𝑖)

= 𝜆𝑗,𝑖 ∙ 𝑒𝑙𝑒𝑞𝑑𝑦(𝑎𝑗, 𝑏𝑗 , 𝑥𝑐𝑗 , 𝑦𝑐𝑗 , 𝜃𝑗)(𝑥𝑗,𝑖, 𝑦𝑗,𝑖)

for 𝑖 = 1, … , 𝑛 − 1

𝑗 = 𝑖 + 1, … , 𝑛

 𝑒𝑙𝑒𝑞(𝑎𝑗 , 𝑏𝑗 , 𝑥𝑐𝑗 , 𝑦𝑐𝑗, 𝜃𝑗)(𝑥𝑗,𝑖, 𝑦𝑗,𝑖) = 0 for 𝑖 = 1, … , 𝑛 − 1

𝑗 = 𝑖 + 1, … , 𝑛

 𝑒𝑙𝑒𝑞(𝑎𝑖, 𝑏𝑖, 𝑥𝑐𝑖, 𝑦𝑐𝑖, 𝜃𝑖)(𝑥𝑗,𝑖, 𝑦𝑗,𝑖) ≥ 𝜀 for 𝑖 = 1, … , 𝑛 − 1

𝑗 = 𝑖 + 1, … , 𝑛

 𝑙𝑏 ≤ 𝑥𝑐𝑖 ≤ 𝑢𝑏 for 𝑖 = 1, … , 𝑛

 𝑙𝑏 ≤ 𝑦𝑐𝑖 ≤ 𝑢𝑏 for 𝑖 = 1, … , 𝑛

 −𝜋 ≤ 𝜃𝑖 ≤ 𝜋 for 𝑖 = 1, … , 𝑛

 𝑙𝑏 ≤ 𝑥𝑚𝑖 ≤ 𝑢𝑏 for 𝑖 = 1, … , 𝑛

 𝑙𝑏 ≤ 𝑦𝑚𝑖 ≤ 𝑢𝑏 for 𝑖 = 1, … , 𝑛

 𝑙𝑏 ≤ 𝑥𝑗,𝑖 ≤ 𝑢𝑏 for 𝑖 = 1, … , 𝑛 − 1

𝑗 = 𝑖 + 1, … , 𝑛

 𝑙𝑏 ≤ 𝑦𝑗,𝑖 ≤ 𝑢𝑏 for 𝑖 = 1, … , 𝑛 − 1

𝑗 = 𝑖 + 1, … , 𝑛

 0 ≤ 𝜆𝑖 ≤ 2 ∙ 𝑢𝑏 for 𝑖 = 1, … , 𝑛

 2 ∙ 𝑙𝑏 ≤ 𝜆𝑗,𝑖 ≤ 0 for 𝑖 = 1, … , 𝑛 − 1

𝑗 = 𝑖 + 1, … , 𝑛

Here 𝑙𝑏 and 𝑢𝑏 are lower and upper bounds defined for each ellipse packing instance in

order to facilitate achieving feasible solutions.

The optimization model (11) has 1 + 6𝑛 + (𝑛 − 1)2 decision variables and, in addition

to the bound constraints that are imposed on all decision variables, 5𝑛 + 4(𝑛 − 1)2

nonlinear constraints: the latter constraints are all non-convex.

Considering the formulas introduced earlier for the ellipses, model (11) represents a

highly nonlinear (global) optimization problem-class in which both the number of

variables and constraints increases quadratically as a function of 𝑛. As an example, to

solve a packing problem with 𝑛 = 10 ellipses, we have a model-instance with 142

decision variables and corresponding bound constraints, and 374 non-convex (nonlinear)

constraints.

Based on these observations, we conjecture that the general computational difficulty of

model (11) will rapidly increase as a function of the number of packed ellipses 𝑛.

3 Numerical Global Optimization for Packing Ellipses

3.1 Global Optimization: Basic Concepts

The objective of global optimization (GO) is to find the “absolutely best” solution of

provably or potentially multi-extremal problems. Most object packing problems are

provably multi-modal, often possessing a large number of local optima. Without going

into technical details, a simple inspection of the relations leading to the problem

statement (11) implies that general ellipse packings belong to a difficult GO model

category.

As noted earlier, one cannot expect to find analytical solutions to general object packing

problems – even when considering far less complicated model types than the one studied

here. Therefore we have been applying global-local numerical optimization to handle

various object configuration (such as spherical point and circle packing) problems, to

produce high quality feasible solutions to non-trivial model instances: for details, cf. e.g.

Pintér (2001), Stortelder et al. (2001), Pintér and Kampas (2005, 2006), Kampas and

Pintér (2006), Castillo et al. (2008), Pintér and Kampas (2013).

In our present study, we apply the Lipschitz Global Optimizer (LGO) solver system for

global-local nonlinear optimization, in its implementation linked to the computing system

Mathematica. First, we review some basic technical requirements related to using LGO:

this is followed by a concise discussion of the key LGO features.

The objective of GO is expressed mathematically as follows. We seek for the best

decision expressed by a real 𝑛-vector 𝑥 ∈ 𝑅𝑛 that satisfies a set of feasibility constraints,

and minimizes (or maximizes) the value of a given objective function. A corresponding

high-level optimization model statement is given by

 minimize 𝑓(𝑥) subject to 𝑥 ∈ 𝐷. (12)

Here 𝑓 denotes the objective function of the decision problem, and 𝐷 denotes the set of

feasible solutions.

Since the analytical solution of GO problems is not possible for a very large variety of

model instances, our practical goal is to solve instances of problem (12) numerically. To

this end, we shall assume that 𝐷 ⊂ 𝑅𝑛 is a bounded robust set (i.e., 𝐷 is the closure of a

non-empty open set) and that 𝑓 is a continuous function. Under these basic conditions –

by the classical theorem of Weierstrass – the set of global solutions to (12) is non-empty.

We denote this set by 𝑋∗ , and remark that in many cases of practical relevance, 𝑋∗

consists of a single point 𝑥∗ , or possibly of several isolated points. For reasons of

algorithmic tractability, it will be assumed that 𝑋∗ is at most countable. Introducing the

notation 𝑓∗ = 𝑓(𝑥∗), to solve (12) theoretically means the following requirement:

 “find all elements of 𝑋∗, and the function value 𝑓∗.” (13)

In numerous cases, it can become very difficult – or even impossible − to solve (12) in

the exact sense of (13). Consequently, often numerical approximations of (13) need to be

used. A frequently stated approximate solution requirement is to find a feasible point x

which yields an objective function value that is “sufficiently close” to 𝑓∗. Hence, our goal

can be described as follows:

 “find an 𝑥 ∈ 𝐷 such that 𝑓(𝑥) ≤ 𝑓∗ + 𝛿.” (14)

In (14), 𝛿 > 0 is a tolerance parameter.

To guarantee the numerical solvability of model (12) in the sense of (14) – on the basis of

a finite set of algorithmically generated search (sample) points from 𝐷 – we need to

postulate also some quantified analytical property of 𝑓 that is valid over 𝐷 . As an

important example, the Lipschitz-continuity of 𝑓 is frequently postulated, when

appropriate. That is, for all point pairs 𝑥1 and 𝑥2 from 𝐷, we assume the relation

 |𝑓(𝑥1)– 𝑓(𝑥2)| ≤ 𝐿||𝑥1– 𝑥2||. (15)

In (15), 𝐿 = 𝐿(𝑓, 𝐷) is a suitable Lipschitz constant of 𝑓 that is valid over the set 𝐷 .

Inequality (15) guarantees that the possible “variability” of function 𝑓 is uniformly

controlled by the respective changes of its argument. The Lipschitz assumption is met,

for instance, by all continuously differentiable functions 𝑓 defined over the compact set

𝐷. However, the best (minimal) value of 𝐿 is typically unknown and to find it would

require the numerical solution of another GO problem: hence, in practice suitable values

of 𝐿 typically need to be estimated based on the generated search points.

In many practical applications of optimization, 𝐷 is defined by explicit, finite lower and

upper bound vectors 𝑙𝑏 and 𝑢𝑏 regarding 𝑥 , and by a finite number of additional

continuous or Lipschitz-continuous constraints; that is,

 𝐷 = {𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏, 𝑔𝑖(𝑥) ≤ 0 for 𝑖 = 1, . . . , 𝑚}. (16)

Obviously, in (16) all bound constraints and inequality constraints are to be interpreted

component-wise (while in model (11) we considered bound and general constraints

individually, in order to provide a detailed description). To maintain a simple

standardized notation, all general inequality constraints are considered in the form

𝑔𝑖(𝑥) ≤ 0 as shown by (16). (All inequality constraints can be simply (re)written in this

form, and equality constraints can be replaced by a pair of inequality constraints.)

3.2 The LGO Solver System for Global-Local Nonlinear Optimization

Within the general modeling framework outlined in Section 3.1, the LGO software

package is aimed at finding the numerical global optimum of model instances from a very

general class of continuous global optimization problems. LGO has been in use since the

early 1990s, and it has been documented in detail by other publications and technical

reports. In particular, Pintér (1996) presents a theoretical exposition of adaptive

deterministic partition strategies and stochastic search methods to solve global

optimization problems under continuity or Lipschitz-continuity assumptions. The

exhaustive search capability of such algorithmic procedures guarantees their theoretical

global convergence. Various implementation aspects and a range of application areas

with detailed case studies are also discussed in the book.

The core solver system in LGO with implementations for various modeling platforms has

been described by Pintér (1996, 1997, 2002, 2005, 2007, 2009), Pintér et al. (2006). For

more recent development work including benchmarking studies, consult e.g. Çaĝlayan

and Pintér (2013), Pintér and Horváth (2013), Pintér and Kampas (2013), Pintér (2014).

Further technical details are discussed by the current LGO manual (Pintér, 2016), which

includes a fairly extensive list of topical references. Therefore here we present only a

very brief summary of key LGO features and implementation details pertinent to this

work.

The core (Fortran or C/C++/C# compiler platform based) LGO solver suite seamlessly

integrates several derivative-free global and local optimization strategies, without

requiring higher-order (gradient or Hessian) information. The strategies referred to

include regularly spaced sampling, as a global presolver (RSS); a branch-and-bound

global search method (BB); global adaptive random search (GARS); Multi-start based

global random search (MS); and local search (LS). According to extensive numerical

experience, in complicated GO models, MS (with added LS solver phases) often finds the

best numerical solution. For this reason, MS is the recommended default LGO solver

option that has been used also in our present numerical study.

3.3 MathOptimizer Professional

LGO has been made available for a number of model development platforms as a

(commercial) solver option: these platforms currently include AMPL, GAMS, MPL,

Excel, Maple, Mathematica and Matlab. Similarly to our earlier circle packing studies,

the ellipse packing model has been implemented in Mathematica (Wolfram Research,

2015): therefore we use here the LGO implementation linked to Mathematica. This

implementation, with the software product name MathOptimizer Professional, has been

extensively used also in our benchmarking studies: cf. e.g. Pintér and Kampas (2013).

Again, we only summarize the key features of this software that are relevant for the

present discussion, and refer for further details to the works cited earlier, as well as to the

current MathOptimizer Professional documentation (Pintér and Kampas, 2015). This

user’s guide is a “live” (fully interactive) Mathematica notebook document with readily

executable examples.

The MathOptimizer Professional software package combines Mathematica’s powerful

optimization model development capabilities with the external LGO solver suite. To

emphasize this point, let us remark that the entire ellipse packing model and its solution

consist “only” of about 50 carefully crafted Mathematica code lines including the code

for displaying the ellipse configurations found. MathOptimizer Professional

automatically transforms optimization models formulated in Mathematica into C or

Fortran code (whenever this is possible): this translated model is handed over directly to

LGO for solution. Following a seamless optimization model compilation, linking, and

execution procedure, the optimization results are directly returned to the calling

Mathematica document. This approach can lead to a significant program execution

speedup when compared to native optimization in Mathematica: the speedup becomes

increasingly more noticeable for larger models. We also note that the core LGO solver

performance compares favorably to the corresponding solver features of Mathematica.

MathOptimizer Professional can be used to handle sizeable models, currently with

thousands of variables and general constraints.

4 Illustrative Numerical Results

To our best knowledge, there are no previously studied model instances available for the

general ellipse packing problem considered in our present work. The problem instances

summarized in Table 1 are taken from Kallrath and Rebennack (2014) – recalling that

their work was aimed at packing ellipses in optimized rectangles. This choice of tests

instances allows comparisons regarding the packing density of rectangular vs. circular

packings (not in a competitive sense, since the configuration geometries are different).

Our calculations were performed on a PC with a quad-core Intel i7 processor running at

3.7 GHz, with 16 GBytes of RAM, using MathOptimizer Professional running in

Mathematica version 10, and using the GCC compiler to generate the files for LGO.

Table 1. Ellipse packing instances

Test

case
(𝑎𝑖, 𝑏𝑖) Total area to

be packed

ax2a (2.0,1.5), (1.5,1.0) 14.13717

ax2b (2.0,1.5), (1.8,1.4) 17.34159

ax3a ax2a + (1.0,0.8) 16.65044

ax3b ax2b + (0.8,0.7) 19.10088

ax4a ax3a + (0.9,0.75) 18.77102

ax4b ax3b + (1.1,1.0) 22.55664

ax5a ax4a + (0.8,0.6) 20.27898

ax5b ax4b + (0.9,0.8) 24.81858

ax6 ax5a + (0.7,0.3) 20.93872

ax11 (2.0,1.5), (1.8,1.5), (1.6,1.5), (1.5,1.2),

(1.3,1.0), (1.2,0.9), (1.1,0.8),

(1.0,0.75), (0.9,0.6), (0.8,0.5),(0.7,0.3)

47.31239

ax14 7 ∙ (1.0,0.75) + 7 ∙ (0.5,0.375) 20.6167

Table 2 summarizes the computational results, noting that CPU times are reasonable even

for the last two (largest) problem instances. Note that Table 2 also includes the packing

fraction and the maximum constraint violation. In Table 3, we summarize our results for

general ellipse packings in an optimized circle next to the best solutions found for

packings in an optimized rectangle given by Kallrath and Rebennack (2014). As

mentioned, the configuration geometries are rather different given the different optimized

containers; but we still get an overall impression regarding the sort of packing densities

that can be achieved for rectangles and circles, for a range of model instances.

Table 2. Ellipse packing results

Test

case

Packing

radius

𝑟𝑐

Area of

optimized

container

Packing

fraction

Time (sec) Max

constraint

violation

ax2a 2.49873 19.61501 0.72073 0.5 8E-9

ax2b 2.9 26.42079 0.65636 0.6 1E-9

ax3a 2.56257 20.63010 0.80709 1.0 5E-10

ax3b 2.9 26.42079 0.72295 1.0 5E-10

ax4a 2.74972 23.75346 0.79024 3.1 4E-9

ax4b 2.98985 28.08333 0.80320 3.0 5E-9

ax5a 2.84911 25.50165 0.79520 7.6 3E-12

ax5b 3.26085 33.40500 0.74296 7.7 9E-9

ax6 2.89647 26.35651 0.79444 20.0 4E-9

ax11 4.35292 59.52662 0.79481 31.0 5E-10

ax14 2.864 25.76890 0.80006 106.0 1E-7

Table 3. Packing results in a circle and packing results in a rectangle

Test

case

Circular container Rectangular container

Area of

optimized

container

Packing

fraction

Area of

optimized

container

Packing

fraction

ax2a 19.61501 0.72073 18.00000 0.78540

ax2b 26.42079 0.65636 22.23152 0.78005

ax3a 20.63010 0.80709 21.38577 0.77858

ax3b 26.42079 0.72295 25.22467 0.75723

ax4a 23.75346 0.79024 23.18708 0.80955

ax4b 28.08333 0.80320 28.54159 0.79031

ax5a 25.50165 0.79520 25.29557 0.80168

ax5b 33.40500 0.74296 31.28873 0.79321

ax6 26.35651 0.79444 25.51043 0.82079

ax11 59.52662 0.79481 64.59177 0.73248

ax14 25.76890 0.80006 29.65886 0.69513

Illustrative packing configurations for the last two (largest) problem instances ax11 and

ax14 are given in Figures 5 and 6, respectively. The points shown on the ellipses and

optimizer container are the subsidiary points for preventing ellipse overlap and

determining the radius of the circumscribing circle. Note that for preventing the overlap

of a pair of ellipses, there is only a point on one of the two ellipses, not on both.

Figure 5. Packing for configuration ax11

Figure 6. Packing for configuration ax14

5 Summary and Conclusions

In this study, we considered the general ellipse packing problem with respect to an

optimized circle container with minimal radius. Our review of the related literature, even

if not all works cited here aim at handling the exact same problem-type, illustrates the

significant difficulty of similar packing problems.

One of our key contributions is the modeling and enforcement of constraints that fall into

two groups. The first group represents the constraints that keep the ellipses inside the

circumscribing circle and prevent them from overlapping. (Recall that preventing ellipse

overlap depends on both the orientation of the ellipses and the location of their centers.)

The second group represents the equations generated by the embedded Lagrange

multiplier conditions. In our global optimization strategy, preventing ellipse overlaps

proceeds simultaneously with the minimization of the radius of the circumscribing circle.

We applied the LGO solver system for global-local nonlinear optimization (with the

software product name MathOptimizer Professional) in an implementation linked to the

computing system Mathematica. Our results demonstrate that the embedded Lagrangian

multipliers based modeling approach combined with global optimization enables the

computational solution of difficult ellipse packing problems with several hundred

variables and general non-convex constraints. Preliminary further work indicates that our

new model formulation approach has the potential to extend to ellipse packing problems

in other types of container sets.

References

Addis, B., Locatelli, M., Schoen, F., 2008. Efficiently packing unequal disks in a circle.

Operations Research Letters 36, 37-42.

Birgin, E.G., Bustamante, L.H., Flores Callisaya, H., Martínez, J.M., 2013. Packing

circles within ellipses. International Transactions in Operational Research 20, 365-389.

Çaĝlayan, M.O., Pintér, J.D., 2013. Development and calibration of a currency trading

strategy using global optimization. Journal of Global Optimization 56, 353–371.

Castillo, I., Kampas, F.J., Pintér, J.D., 2008. Solving circle packing problems by global

optimization: Numerical results and industrial applications. European Journal of

Operational Research 191, 786-802.

Castillo, I., Sim, T., 2004. A spring-embedding approach for the facility layout problem.

Journal of the Operational Research Society 55, 73-81.

Fasano, G. Pintér, J.D. (Eds.), 2015. Optimized Packings with Applications. Springer

Science + Business Media, New York.

Galiev, S.I., Lisafina, M.S., 2013. Numerical optimization methods for packing equal

orthogonally oriented ellipses in a rectangular domain. Computational Mathematics and

Mathematical Physics 53, 1748-1762.

Gensane, T., Honvault, P., 2014. Optimal packings of two ellipses in a square. Forum

Geometricorum 14, 371-380.

Grosso, A., Jamali, A.R.M.J.U., Locatelli, M., Schoen, F., 2010. Solving the problem of

packing equal and unequal circles in a circular container. Journal of Global Optimization

47, 63-81.

Hifi, M., M’Hallah, R., 2009. A literature review on circle and sphere packing problems:

models and methodologies. Advances in Operations Research 2009, Article ID 150624,

22 pages, doi:10.1155/2009/150624.

Kallrath, J., Rebennack, S., 2014. Cutting ellipses from area-minimizing rectangles.

Journal of Global Optimization 59, 405-437.

Kampas, F.J., Pintér, J.D., 2006. Configuration analysis and design by using optimization

tools in Mathematica. The Mathematica Journal 10, 128-154.

Litvinchev, I., Infante, L., Ozuna, L., 2015. Packing circular-like objects in a rectangular

container. Journal of Computer and Systems Sciences International 54, 259-267.

Markót, M.Cs., 2005. Optimal packing of 28 equal circles in a unit square – the first

reliable solution. Numerical Algorithms 37, 253-261.

Pintér, J.D., 1996. Global Optimization in Action. Kluwer Academic Publishers,

Dordrecht. (Now distributed by Springer Science + Business Media, New York.)

Pintér, J.D., 1997. LGO − A program system for continuous and Lipschitz global

optimization. In: Bomze, I., Csendes, T., Horst, R., Pardalos, P.M. (Eds.). Developments

in Global Optimization, pp. 183-197. Kluwer Academic Publishers, Dordrecht.

Pintér, J.D., 2001. Globally optimized spherical point arrangements: model variants and

illustrative results. Annals of Operations Research 104, 213-230.

Pintér, J.D., 2002. Global optimization: software, test problems, and applications. In:

Pardalos, P.M., Romeijn, H.E. (Eds.). Handbook of Global Optimization, Vol. 2., pp.

515-569. Kluwer Academic Publishers, Dordrecht.

Pintér, J.D., 2005. Nonlinear optimization in modeling environments: software

implementations for compilers, spreadsheets, modeling languages, and integrated

computing systems. In: Jeyakumar, V., Rubinov, A.M., Eds. Continuous Optimization:

Current Trends and Applications, pp. 147-173. Springer Science + Business Media, New

York.

Pintér, J.D., 2007. Nonlinear optimization with GAMS/LGO. Journal of Global

Optimization 38, 79–101.

Pintér, J.D., 2009. Software development for global optimization. In: Pardalos, P.M. and

T. F. Coleman, Eds. Global Optimization: Methods and Applications, pp. 183-204. Fields

Institute Communications Volume 55. Published by the American Mathematical Society,

Providence, RI.

Pintér, J.D., 2014. How difficult is nonlinear optimization? A practical solver tuning

approach, with illustrative results. (Submitted for publication) Available at

http://www.optimization-online.org/DB_HTML/2014/06/4409.html.

Pintér, J.D., 2016. LGO – A Model Development and Solver System for Global-Local

Nonlinear Optimization, User’s Guide. (Current edition) Published and distributed by

Pintér Consulting Services, Inc., Halifax, NS, Canada.

Pintér, J.D., Kampas, F.J., 2005. Nonlinear optimization in Mathematica with

MathOptimizer Professional. Mathematica in Education and Research 10, 1-18.

Pintér, J.D., Kampas, F.J., 2006. MathOptimizer Professional: key features and

illustrative applications. In: Liberti, L., Maculan, N. (Eds.), Global Optimization: From

Theory to Implementation. Springer Science + Business Media, New York, 263-

280.Pintér, J.D., Linder, D. and Chin, P., 2006. Global Optimization Toolbox for Maple:

An introduction with illustrative applications. Optimization Methods and Software 21,

565-582.

Pintér, J.D., Horváth, Z., 2013. Integrated experimental design and nonlinear

optimization to handle computationally expensive models under resource constraints.

Journal of Global Optimization 57, 191-215.

Pintér, J.D., Kampas, F.J., 2013. Benchmarking nonlinear optimization software in

technical computing environments. I. Global optimization in Mathematica with

MathOptimizer Professional. TOP 21, 133-162.

Pintér, J.D., Kampas, F.J., 2015. Getting Started with MathOptimizer Professional.

Published and distributed by Pintér Consulting Services, Inc., Halifax, NS, Canada.

Riskin, M.D., Bessette, K.C., Castillo, I., 2003. A logarithmic barrier approach to solving

the dashboard planning problem. INFOR 41, 245-257.

Stortelder, W.J.H., de Swart, J.J.B., Pintér, J.D., 2001. Finding elliptic Fekete point sets:

Two numerical solution approaches. Journal of Computational and Applied Mathematics

130, 205-216.

Szabó, P.G., Csendes, T., Casado, L.G., García, I., 2001. Equal circles packing in a

square I – Problem setting and bounds for optimal solutions. In: Giannessi, F., Pardalos,

P.M., Rapcsák, T. (Eds.), Optimization Theory: Recent Developments from Mátraháza.

Kluwer, Dordrecht.

Szabó, P.G., Markót, M.C., Csendes, T., 2005. Global optimization in geometry – circle

packing into the square. In: Audet, P., Hansen, P., Savard, G. (Eds.), Essays and Surveys

in Global Optimization. Kluwer, Dordrecht.

Szabó, P.G., Markót, M.C., Csendes, T., Specht, E., Casado, L.G., García, I., 2007. New

Approaches to Circle Packing in a Square with Program Codes. Springer Science +

Business Media, New York.

Uhler, C., Wright, S.J., 2013. Packing ellipsoids with overlap. SIAM Review 55, 671-

706.

Wolfram Research, 2015. Mathematica (Current release 10.3, December 2015). Wolfram

Research, Inc., Champaign, IL.

