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Abstract 

 

The general ellipse packing problem is to find a non-overlapping arrangement of 𝑛 

ellipses with (in principle) arbitrary size and orientation parameters inside a given type of 

container set. Here we consider the general ellipse packing problem with respect to an 

optimized circle container with minimal radius. Following the review of selected topical 

literature, we introduce a new model formulation approach based on using embedded 

Lagrange multipliers. This optimization model is implemented using the computing 

system Mathematica: we present illustrative numerical results using the LGO global-local 

optimization software package linked to Mathematica. Our study demonstrates the 

applicability of the embedded Lagrange multipliers based modeling approach combined 

with global optimization tools to solve challenging ellipse packing problems. 

 

 

1 Introduction and Review of Related Work 

 

1.1 Circle Packings 

 

In a general setting, a circle packing is an optimized non-overlapping arrangement of 𝑛 

arbitrary size circles inside a container (such as a circle, square or a general rectangle). 

The quality of the packing is typically measured by the size (area) of the container. The 

circle packing problem – in particular the case of identical circles – has received 

considerable attention as reflected by the literature. Due to the special (inherently 

symmetric) structure of this problem-type, studies dealing with identical circle packings 

often aim to prove the optimality of the configurations found, either theoretically or with 

the help of rigorous computational approaches: consult e.g. Szabó et al. (2001, 2005, 

2007), Markót (2005) with numerous related further references therein. 

 

The arbitrary sized circle packing problem is a significant generalization of the uniform 

sized case, since now each packed circle can have a different (in principle, arbitrary) 

radius. Generally speaking, provably optimal configurations can be found only to very 

small model instances (𝑛 ≤ 4). Therefore studies dealing with general circle packings 

typically introduce and apply efficient generic or tailored global scope solution strategies, 

but without the proven optimality of the results obtained: cf. e.g. Riskin et al. (2003), 

Castillo and Sim (2004), Pintér and Kampas (2005, 2006a, b), Kampas and Pintér (2006), 

Addis et al. (2008), Castillo et al. (2008), Grosso et al. (2010). 

 



Without going into further details related to circle packings, we refer to Castillo et al. 

(2008) and to Hifi and M’Hallah (2009) for reviews of both uniform and arbitrary sized 

circle packing problems and applications. Let us also remark that more general – and 

often very challenging – packing problem-types with a range of important real-world 

applications are discussed in the edited volume (Fasano and Pintér, 2015). 

 

1.2 Ellipse Packings 

 

The ellipse packing problem has received relatively little attention in the literature so far. 

Finding high quality (globally optimized) ellipse packings is a difficult computational 

problem, especially when dealing with packing ellipses of arbitrary size and orientation. 

The key challenge is the modeling and enforcement of the no-overlap constraints. Let us 

note here that measuring the overlap between two ellipses depends also on the orientation 

of the ellipses, in addition to the location of their centers. 

 

Next, we briefly review some of the related literature. Even if not all works cited here are 

aimed at handling the exact same problem-type addressed by our present study, these 

works illustrate the significant difficulty of similar packings. 

 

First we mention an exact result that deals with the densest packing of just two non-

overlapping congruent ellipses in a square. In this case, for all real numbers 𝑟 in [0,1], 
Gensane and Honvault (2014) analytically describe the densest packing of two ellipses 

with aspect ratio 𝑟. 

 

Birgin et al. (2013) study the problem of packing sets of identical circles within an 

ellipse. The basic challenge here is the closed formula based calculation to compute the 

distance of an arbitrary point to the boundary of the containing ellipse. The authors note 

that – even when considering only identical size circles – the resulting models are 

challenging nonlinear programming problems.  In order to seek for globally optimized 

solutions, the authors propose stochastic multi-start and lattice-based search strategies. 

 

Litvinchev et al. (2015) find optimized packings of “circular-like” objects – including 

circles, ellipses, rhombuses, and octagons – in a rectangular container. The authors 

propose a linear 0-1 model formulation based on a grid that approximates the container, 

and then consider the nodes of the grid as potential positions for assigning centers of the 

objects. The resulting binary linear programming problem is solved using the commercial 

software package CPLEX. Numerical results related to packing circles, ellipses, 

rhombuses, and octagons are presented. Let us point out that, given the grid 

approximation of the container, this approach can only handle the packing of uniform 

sized and orthogonally oriented ellipses inside a container: this is clearly a limitation in 

the context of our present study. 

 

Galiev and Lisafina (2013) study the problem of packing uniform sized and orthogonally 

oriented ellipses inside a rectangular container. Similarly to Litvinchev et al. (2015), 

linear 0-1 model formulations are proposed using a grid that approximates the container. 

Two special cases regarding the orientation of the ellipses are considered: i) the major 



axes of all the ellipses are parallel to the 𝑥 or 𝑦 axis, and ii) the major axes of some of the 

ellipses are parallel to the 𝑥 axis and others to the 𝑦 axis. A heuristic algorithm based on 

the linear model formulations is proposed and numerical results are presented. 

 

Kallrath and Rebennack (2014) address the problem of packing ellipses of arbitrary size 

and orientation into an optimized rectangle (of minimal area). The packing model 

formulation is introduced as a cutting problem. The key idea is to use separating lines to 

ensure that the ellipses do not overlap with each other. For problem-instances with 𝑛 ≤
14 ellipses, the authors present feasible solutions that are globally optimal subject to the 

finite arithmetic precision of the global solvers at hand. However – according to these 

authors – for 𝑛 >  14 ellipses none of the local or global nonlinear optimization solvers 

available in conjunction with the GAMS modeling environment could compute a feasible 

solution. Therefore they propose heuristic approaches, in which the ellipses are added 

sequentially to an optimized rectangular container: this approach allows computing 

visibly high-quality solutions for up to 100 ellipses. 

 

Uhler and Wright (2013) study the problem of packing arbitrary sized ellipsoids into an 

ellipsoidal container so as to minimize a measure of overlap between ellipsoids. A model 

formulation and two local scope solution approaches are discussed: one approach for the 

general case, and a simpler approach for the special case in which all ellipsoids are in fact 

spheres. The authors describe and illustrate their computational experience using 

chromosome organization in the human cell nucleus as the motivating application. 

 

Based also on the illustrative references cited, we argue that ellipse packings have a 

number of practical applications, with a view also towards the future use of such models. 

Here we study the non-overlapping packing of ellipses with arbitrary size and orientation 

parameters inside a circular container: our objective is to minimize the radius of the 

container circle. 

 

Packing ellipses into a circle requires i) the determination of the maximal distance from 

the center of the circular container to each ellipse (boundary), and ii) the finding of the 

minimal distance between all pairs of the ellipses. The first requirement is necessary to 

determine the radius of the circumscribing circle (which is then to be minimized). The 

second requirement is necessary to prevent the ellipses from overlapping. Explicit 

analytical formulas for these quantities – if they exist – would be complex. Therefore the 

approach taken here involves determining those quantities by embedding optimization 

calculations (using Lagrange multipliers) into the overall optimization strategy. In this 

Lagrangian setting, the optimization strategy to find the radius of the circumscribing 

circle and to prevent ellipse overlap proceeds simultaneously towards meeting both 

requirements. This approach allows us to solve the minimization problem numerically 

with a single call to a suitable global optimization procedure. While – analogously to the 

significantly easier case of general circle packings – we cannot guarantee the theoretical 

(provable) optimality of the ellipse configurations found, our work leads to visibly good 

quality ellipse packings. Packing three- or higher-dimensional ellipsoids can be seen as 

an immediate extension of the two-dimensional problem statement considered here. 



Other related model-types and solution strategies will be discussed in our forthcoming 

studies. 

 

 

2 Model Formulation 

 

As stated above, the objective of the general ellipse packing problem studied here is to 

minimize the radius of the circumscribing circle. The inputs to the optimization problem 

are the semi-major and semi-minor axes of the ellipses to be packed. The primary 

decision variables are the radius of the circumscribing circle, and the centre position and 

orientation of each of the packed ellipses. Secondary (induced) variables are the positions 

of the points on the ellipses most distant from the center of the circumscribing circle, and 

the positions of the points on one of each pair of ellipses which minimizes the value of 

the equation describing the other ellipse. Other secondary variables are the embedded 

Lagrange multipliers used to determine those points. Note that all secondary variables are 

implicitly determined by the primary decision variables. 

 

The constraints fall into two groups. The first constraint group uses the secondary 

variables to represent the constraints that keep the ellipses inside the circumscribing 

circle and prevent them from overlapping. The second constraint group represents the 

equations generated by the embedded Lagrange multiplier conditions. In our global 

optimization strategy, the calculations for finding the radius of the circumscribing circle 

and for preventing ellipse overlaps proceed simultaneously with the minimization of the 

radius of the circumscribing circle, rather than being performed to completion at each 

step towards the minimization of the radius. 

 

Next, we present our formal model. Equation 𝑒𝑙𝑒𝑞(𝑎, 𝑏, 𝑥𝑐, 𝑦𝑐, 𝜃)(𝑥, 𝑦)  describes an 

ellipse with semi-major and semi-minor axes 𝑎 and 𝑏, centered at {𝑥𝑐, 𝑦𝑐}, and rotated 

counterclockwise by angle 𝜃. More specifically, 𝑒𝑙𝑒𝑞(𝑎, 𝑏, 𝑥𝑐, 𝑦𝑐, 𝜃)(𝑥, 𝑦) is negative for 

all points (𝑥, 𝑦) inside the ellipse, zero for all points on the ellipse boundary, and positive 

for all points outside the ellipse. Note that 𝑎 and  𝑏 are given input parameters, while 

(𝑥𝑐, 𝑦𝑐) and 𝜃 are primary decision variables for each ellipse 𝑖: the latter will be denoted 

by (𝑥𝑐𝑖, 𝑦𝑐𝑖) and 𝜃𝑖 for 𝑖 = 1, … , 𝑛. 

 

Equation 𝑒𝑙𝑒𝑞(𝑎, 𝑏, 𝑥𝑐, 𝑦𝑐, 𝜃)(𝑥, 𝑦) can be obtained by transforming the equation of a 

circle with radius 1, centered at (0,0), as follows. 

 

 𝑒𝑙𝑒𝑞(𝑎, 𝑏, 𝑥𝑐, 𝑦𝑐, 𝜃)(𝑥, 𝑦)

= (
cos (𝜃) (𝑥 − 𝑥𝑐)

𝑎
+

sin (𝜃) (𝑦 − 𝑦𝑐)

𝑎
)

2

+ (
cos (𝜃) (𝑦 − 𝑦𝑐)

𝑏
−

sin (𝜃) (𝑥 − 𝑥𝑐)

𝑏
)

2

− 1 

(1) 

 

Note that in (1) the coordinate system is rotated by an angle of – 𝜃, which is equivalent to 

rotating the ellipse by an angle 𝜃 around its centre. 

 



By assumption, the circumscribing circle is centered at the origin, so its radius must be at 

least the maximum value of √𝑥2 + 𝑦2 that can be obtained for all points (𝑥, 𝑦) of the 

packed ellipses. The point on an ellipse with the maximum value of 𝑥2 + 𝑦2 is clearly the 

same as the point which maximizes √𝑥2 + 𝑦2 , and it can be determined using the 

Lagrange multiplier method by differentiating 𝑥2 + 𝑦2 = 𝜆 ∙ 𝑒𝑙(𝑥, 𝑦) with respect to 𝑥, 𝑦, 

and 𝜆 , where 𝑒𝑙(𝑥, 𝑦)  represents the ellipse 𝑒𝑙𝑒𝑞(𝑎, 𝑏, 𝑥𝑐, 𝑦𝑐, 𝜃)(𝑥, 𝑦) . Applying this 

method, we obtain the equations 

 

 

{

2𝑥 = 𝜆 ∙ 𝑒𝑙(1,0)(𝑥, 𝑦)

2𝑦 = 𝜆 ∙ 𝑒𝑙(0,1)(𝑥, 𝑦)

𝑒𝑙(𝑥, 𝑦) = 0

}, 

(2) 

 

where 𝑒𝑙(1,0)(𝑥, 𝑦) is the derivative of 𝑒𝑙(𝑥, 𝑦) with respect to 𝑥 and 𝑒𝑙(0,1)(𝑥, 𝑦) is the 

derivative of 𝑒𝑙(𝑥, 𝑦) with respect to 𝑦. 

 

The next equation follows simply from the requirement that the point sought lies on the 

ellipse boundary. Note that 𝜆 can be eliminated from the first two equations: hence, we 

obtain 

 

 𝑦 ∙ 𝑒𝑙(1,0)(𝑥, 𝑦) = 𝑥 ∙ 𝑒𝑙(0,1)(𝑥, 𝑦). (3) 

 

Since the slope of the ellipse boundary at point (𝑥, 𝑦) is given by 

 

 
𝑑𝑦

𝑑𝑥
=

𝜕𝑒𝑙(𝑥, 𝑦)
𝜕𝑥

⁄

𝜕𝑒𝑙(𝑥, 𝑦)
𝜕𝑦⁄

=
𝑒𝑙(1,0)(𝑥, 𝑦)

𝑒𝑙(0,1)(𝑥, 𝑦)
=

𝑥

𝑦
 

(4) 

 

from equation (3), the slope of the line from (0,0) to (𝑥, 𝑦), which is 𝑦/𝑥 , is the inverse 

of the slope of the ellipse at the point most distant from the origin. In other words, the 

line from the origin to the point on the ellipse most distant from the origin is 

perpendicular to the ellipse boundary at that point, as one might expect. 

 

It is useful to setup equations for the derivatives of the ellipse equation with respect to 𝑥 

and 𝑦. These derivatives are: 

 

 𝑒𝑙𝑒𝑞𝑑𝑥(𝑎, 𝑏, 𝑥𝑐, 𝑦𝑐, 𝜃)(𝑥, 𝑦)

=
2

𝑎2𝑏2
(𝑏2(𝑥 − 𝑥𝑐) cos(𝜃)2

− (𝑎2 − 𝑏2)(𝑦 − 𝑦𝑐) cos(𝜃) sin(𝜃)
+ 𝑎2(𝑥 − 𝑥𝑐) sin(𝜃)2); 

(5) 

 

 𝑒𝑙𝑒𝑞𝑑𝑦(𝑎, 𝑏, 𝑥𝑐, 𝑦𝑐, 𝜃)(𝑥, 𝑦) =
2

𝑎2𝑏2
(𝑎2(𝑦 − 𝑦𝑐) cos(𝜃)2 −

(𝑎2 − 𝑏2)(𝑥 − 𝑥𝑐) cos(𝜃) sin(𝜃) + 𝑏2(𝑦 − 𝑦𝑐) sin(𝜃)2). 

(6) 

 



The equations shown below are used to find the points that are closest and most distant 

from the origin.  To obtain the most distant point, 𝜆 must be positive, since increasing the 

size of the ellipse increases the value of the maximum distance only, assuming that the 

center of the circle (0,0) does not lie inside the ellipse. If this is the case, then other 

ellipses outside that particular ellipse will determine the radius of the container circle. 

 

 

{

2𝑥 = 𝜆 ∙ 𝑒𝑙𝑒𝑞𝑑𝑥(𝑎, 𝑏, 𝑥𝑐, 𝑦𝑐, 𝜃)(𝑥, 𝑦)

2𝑦 = 𝜆 ∙ 𝑒𝑙𝑒𝑞𝑑𝑦(𝑎, 𝑏, 𝑥𝑐, 𝑦𝑐, 𝜃)(𝑥, 𝑦)

𝑒𝑙𝑒𝑞(𝑎, 𝑏, 𝑥𝑐, 𝑦𝑐, 𝜃)(𝑥, 𝑦) = 0.

} 

(7) 

 

For example, consider the ellipse defined by 𝑒𝑙𝑒𝑞(1.25,0.75,1,2, 𝜋/3)(𝑥, 𝑦). The point 

on it that is most distant from the origin can be found solving equations (7): the numerical 

solution is (𝑥, 𝑦) = (1.608,3.092), with corresponding distance value 3.485. 
 

In the optimization strategy, the requirement on the (positive) sign of 𝜆 will be enforced 

by setting search bounds, rather than specifying a constraint. Moreover, the value of the 

maximum distance from the origin is obtained by evaluating √𝑥2 + 𝑦2 at the solution of 

equation (7). Note that equation (7) may fail, if the ellipse contains the origin. To handle 

this potential issue, constraints are added to the optimization strategy in order to keep the 

maximum distance point further from the origin than the smaller of the semi-major or 

semi-minor axis of the ellipse in question. For illustration, a packed ellipse, a possible 

circumscribing circle, and the point of their intersection are shown in Figure 1. 

 

 
Figure 1. A packed ellipse, the circumscribing circle, and their intersection point 

 

Proceeding now to prevent ellipse overlaps, all pairs of packed ellipses are prevented 

from overlapping by requiring that the minimum value of the ellipse equation for the first 

ellipse (say ellipse 𝑖), for any point on the second ellipse (say ellipse 𝑗), is greater than a 

judiciously set (sufficiently small) 𝜀 ≥ 0. This requirement will also be accomplished 

using the embedded Lagrange multiplier method. 

 

 

{

𝑒𝑙𝑖
(1,0)(𝑥, 𝑦) = 𝜆 ∙ 𝑒𝑙𝑗

(1,0)(𝑥, 𝑦)

𝑒𝑙𝑖
(0,1)(𝑥, 𝑦) = 𝜆 ∙ 𝑒𝑙𝑗

(0,1)(𝑥, 𝑦)

𝑒𝑙𝑗(𝑥, 𝑦) = 0.

} 

(8) 
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The last equation type is the requirement that the point lies on ellipse 𝑗. Eliminating 𝜆 

from the first two equations, we obtain 

 

 𝑒𝑙𝑖
(0,1)(𝑥, 𝑦) ∙ 𝑒𝑙𝑗

(1,0)(𝑥, 𝑦) = 𝑒𝑙𝑗
(0,1)

(𝑥, 𝑦) ∙ 𝑒𝑙𝑖
(1,0)(𝑥, 𝑦). (9) 

 

Note that, as expected, the slope of the expanded ellipse 𝑖 equals the slope of ellipse 𝑗 at 

the point on ellipse 𝑗 that minimizes or maximizes the value of the function describing 

ellipse 𝑖. 
 

The equations shown below determine the point on ellipse 𝑗 that maximizes or minimizes 

the value of the function describing ellipse 𝑖 . In the case considered here, 𝜆 must be 

negative to obtain the minimum. As indicated before, in the optimization strategy the 

requirement on the sign of 𝜆 will be enforced by setting its search bounds rather than 

specifying an additional constraint. 

 

 

{

𝑒𝑙𝑒𝑞𝑑𝑥(𝑎𝑖, 𝑏𝑖 , 𝑥𝑐𝑖, 𝑦𝑐𝑖, 𝜃𝑖)(𝑥, 𝑦) = 𝜆 ∙ 𝑒𝑙𝑒𝑞𝑑𝑥(𝑎𝑗 , 𝑏𝑗 , 𝑥𝑐𝑗 , 𝑦𝑐𝑗, 𝜃𝑗)(𝑥, 𝑦)

𝑒𝑙𝑒𝑞𝑑𝑦(𝑎𝑖, 𝑏𝑖 , 𝑥𝑐𝑖, 𝑦𝑐𝑖, 𝜃𝑖)(𝑥, 𝑦) = 𝜆 ∙ 𝑒𝑙𝑒𝑞𝑑𝑦(𝑎𝑗, 𝑏𝑗 , 𝑥𝑐𝑗 , 𝑦𝑐𝑗 , 𝜃𝑗)(𝑥, 𝑦)

𝑒𝑙𝑒𝑞(𝑎𝑗, 𝑏𝑗 , 𝑥𝑐𝑗 , 𝑦𝑐𝑗 , 𝜃𝑗)(𝑥, 𝑦) = 0.

} 

(10) 

 

For example, consider the ellipses defined by 𝑒𝑙𝑒𝑞𝑖(1.25,0.75,1,2, 𝜋/3)(𝑥, 𝑦)  and 

𝑒𝑙𝑒𝑞𝑗(1.5,0.83, −0.5,1, 𝜋/4)(𝑥, 𝑦). The overlap (value of 𝑒𝑙𝑒𝑞𝑖) between the ellipses is 

−0.886 with (𝑥, 𝑦) = (0.701,1.777): this can be found by solving equation (10).  Figure 

2 shows this overlapping configuration. 

 

 
Figure 2. Two overlapping ellipses 

 

As another example, consider now the ellipses defined by 𝑒𝑙𝑒𝑞𝑖(1.25,0.75, −1, −2, 𝜋/
3)(𝑥, 𝑦) and 𝑒𝑙𝑒𝑞𝑗(1.5,0.83, −0.5,1, 𝜋/4)(𝑥, 𝑦). The non-overlapping value between the 

ellipses is 1.84  with (𝑥, 𝑦) = (−0.758, −0.141): again, this can be found by solving 

equation (10). Figure 3 shows this non-overlapping configuration. 

 



 
Figure 3. Two non-overlapping ellipses 

 

In the overall optimization strategy, 𝜆𝑖 are the Lagrange multpliers in the equations for 

finding the point (𝑥𝑚𝑖, 𝑦𝑚𝑖)  on ellipse 𝑖  that is most distant from the origin. The 

calculation is restricted to maximization by restricting the sign of 𝜆𝑖 to be postive. The 

square of the radius of the circumscribing circle satisfies the relation  𝑟𝑐2 ≥ 𝑥𝑚𝑖
2 + 𝑦𝑚𝑖

2 

for all 𝑖. In addition, 𝜆𝑖,𝑗 are the Lagrange multpliers in the equations for finding the point 

(𝑥𝑗,𝑖, 𝑦𝑗,𝑖) on ellipse 𝑗 that minimizes the value of the equation describing ellipse 𝑖. This 

calculation is restricted to minimization by requiring the value of 𝜆𝑖,𝑗  to be negative. 

Finally, there are the constraints that prevent ellipse 𝑖 from overlapping with ellipse 𝑗, by 

requiring the value of the equation describing ellipse 𝑖  on the point on ellipse 𝑗  that 

minimizes that value to be at least 𝜀. Values of 𝜀 = 0.00, 1E-6, and 0.01 have been used 

successfully: hence, the model and the optimization solver are not too sensitive to the 

choice of this parameter. 

 

To summarize the model development steps described above, we obtain the following 

optimization model for the case of 𝑛 ellipses. 

 

minimize 𝑟𝑐  (11) 

 

subject to 𝑟𝑐2 ≥ 𝑥𝑚𝑖
2 + 𝑦𝑚𝑖

2 for 𝑖 = 1, … , 𝑛 

 

 

  𝑥𝑚𝑖
2 + 𝑦𝑚𝑖

2 ≥ min (𝑎𝑖, 𝑏𝑖)
2 for 𝑖 = 1, … , 𝑛 

 

 

  2 ∙ 𝑥𝑚𝑖

= 𝜆𝑖 ∙ 𝑒𝑙𝑒𝑞𝑑𝑥(𝑎𝑖, 𝑏𝑖, 𝑥𝑐𝑖, 𝑦𝑐𝑖, 𝜃𝑖)(𝑥𝑚𝑖, 𝑦𝑚𝑖) 
 

for 𝑖 = 1, … , 𝑛  

  2 ∙ 𝑦𝑚𝑖

= 𝜆𝑖 ∙ 𝑒𝑙𝑒𝑞𝑑𝑦(𝑎𝑖, 𝑏𝑖 , 𝑥𝑐𝑖, 𝑦𝑐𝑖, 𝜃𝑖)(𝑥𝑚𝑖, 𝑦𝑚𝑖) 

 

for 𝑖 = 1, … , 𝑛  

  𝑒𝑙𝑒𝑞(𝑎𝑖, 𝑏𝑖, 𝑥𝑐𝑖, 𝑦𝑐𝑖, 𝜃𝑖)(𝑥𝑚𝑖, 𝑦𝑚𝑖) = 0 for 𝑖 = 1, … , 𝑛 

 

 



  𝑒𝑙𝑒𝑞𝑑𝑥(𝑎𝑖, 𝑏𝑖, 𝑥𝑐𝑖, 𝑦𝑐𝑖, 𝜃𝑖)(𝑥𝑗,𝑖, 𝑦𝑗,𝑖)

= 𝜆𝑗,𝑖 ∙ 𝑒𝑙𝑒𝑞𝑑𝑥(𝑎𝑗, 𝑏𝑗 , 𝑥𝑐𝑗, 𝑦𝑐𝑗, 𝜃𝑗)(𝑥𝑗,𝑖, 𝑦𝑗,𝑖) 

for 𝑖 = 1, … , 𝑛 − 1 

𝑗 = 𝑖 + 1, … , 𝑛 
 

 

  𝑒𝑙𝑒𝑞𝑑𝑦(𝑎𝑖, 𝑏𝑖, 𝑥𝑐𝑖 , 𝑦𝑐𝑖, 𝜃𝑖)(𝑥𝑗,𝑖, 𝑦𝑗,𝑖)

= 𝜆𝑗,𝑖 ∙ 𝑒𝑙𝑒𝑞𝑑𝑦(𝑎𝑗, 𝑏𝑗 , 𝑥𝑐𝑗 , 𝑦𝑐𝑗 , 𝜃𝑗)(𝑥𝑗,𝑖, 𝑦𝑗,𝑖) 

for 𝑖 = 1, … , 𝑛 − 1 

𝑗 = 𝑖 + 1, … , 𝑛 
 

 

  𝑒𝑙𝑒𝑞(𝑎𝑗 , 𝑏𝑗 , 𝑥𝑐𝑗 , 𝑦𝑐𝑗, 𝜃𝑗)(𝑥𝑗,𝑖, 𝑦𝑗,𝑖) = 0 for 𝑖 = 1, … , 𝑛 − 1 

𝑗 = 𝑖 + 1, … , 𝑛 
 

 

  𝑒𝑙𝑒𝑞(𝑎𝑖, 𝑏𝑖, 𝑥𝑐𝑖, 𝑦𝑐𝑖, 𝜃𝑖)(𝑥𝑗,𝑖, 𝑦𝑗,𝑖) ≥ 𝜀 for 𝑖 = 1, … , 𝑛 − 1 

𝑗 = 𝑖 + 1, … , 𝑛 
 

 

  𝑙𝑏 ≤ 𝑥𝑐𝑖 ≤ 𝑢𝑏 for 𝑖 = 1, … , 𝑛 

 

 

  𝑙𝑏 ≤ 𝑦𝑐𝑖 ≤ 𝑢𝑏 for 𝑖 = 1, … , 𝑛 

 

 

  −𝜋 ≤ 𝜃𝑖 ≤ 𝜋 for 𝑖 = 1, … , 𝑛 

 

 

  𝑙𝑏 ≤ 𝑥𝑚𝑖 ≤ 𝑢𝑏 for 𝑖 = 1, … , 𝑛 

 

 

  𝑙𝑏 ≤ 𝑦𝑚𝑖 ≤ 𝑢𝑏 for 𝑖 = 1, … , 𝑛 

 

 

  𝑙𝑏 ≤ 𝑥𝑗,𝑖 ≤ 𝑢𝑏 for 𝑖 = 1, … , 𝑛 − 1 

𝑗 = 𝑖 + 1, … , 𝑛 
 

 

  𝑙𝑏 ≤ 𝑦𝑗,𝑖 ≤ 𝑢𝑏 for 𝑖 = 1, … , 𝑛 − 1 

𝑗 = 𝑖 + 1, … , 𝑛 
 

 

  0 ≤ 𝜆𝑖 ≤ 2 ∙ 𝑢𝑏 for 𝑖 = 1, … , 𝑛 

 

 

  2 ∙ 𝑙𝑏 ≤ 𝜆𝑗,𝑖 ≤ 0 for 𝑖 = 1, … , 𝑛 − 1 

𝑗 = 𝑖 + 1, … , 𝑛 

 

 

Here 𝑙𝑏 and 𝑢𝑏 are lower and upper bounds defined for each ellipse packing instance in 

order to facilitate achieving feasible solutions. 

 

The optimization model (11) has 1 + 6𝑛 + (𝑛 − 1)2 decision variables and, in addition 

to the bound constraints that are imposed on all decision variables,  5𝑛 + 4(𝑛 − 1)2 

nonlinear constraints: the latter constraints are all non-convex. 

 

Considering the formulas introduced earlier for the ellipses, model (11) represents a 

highly nonlinear (global) optimization problem-class in which both the number of 

variables and constraints increases quadratically as a function of 𝑛. As an example, to 

solve a packing problem with 𝑛 =  10  ellipses, we have a model-instance with 142 

decision variables and corresponding bound constraints, and 374 non-convex (nonlinear) 

constraints. 



 

Based on these observations, we conjecture that the general computational difficulty of 

model (11) will rapidly increase as a function of the number of packed ellipses 𝑛. 

 

 

3 Numerical Global Optimization for Packing Ellipses 

 

3.1 Global Optimization: Basic Concepts 

 

The objective of global optimization (GO) is to find the “absolutely best” solution of 

provably or potentially multi-extremal problems. Most object packing problems are 

provably multi-modal, often possessing a large number of local optima. Without going 

into technical details, a simple inspection of the relations leading to the problem 

statement (11) implies that general ellipse packings belong to a difficult GO model 

category. 

 

As noted earlier, one cannot expect to find analytical solutions to general object packing 

problems – even when considering far less complicated model types than the one studied 

here. Therefore we have been applying global-local numerical optimization to handle 

various object configuration (such as spherical point and circle packing) problems, to 

produce high quality feasible solutions to non-trivial model instances: for details, cf. e.g. 

Pintér (2001), Stortelder et al. (2001), Pintér and Kampas (2005, 2006), Kampas and 

Pintér (2006), Castillo et al. (2008), Pintér and Kampas (2013). 

 

In our present study, we apply the Lipschitz Global Optimizer (LGO) solver system for 

global-local nonlinear optimization, in its implementation linked to the computing system 

Mathematica. First, we review some basic technical requirements related to using LGO: 

this is followed by a concise discussion of the key LGO features. 

 

The objective of GO is expressed mathematically as follows. We seek for the best 

decision expressed by a real 𝑛-vector 𝑥 ∈ 𝑅𝑛 that satisfies a set of feasibility constraints, 

and minimizes (or maximizes) the value of a given objective function. A corresponding 

high-level optimization model statement is given by 

 

 minimize 𝑓(𝑥) subject to 𝑥 ∈ 𝐷. (12) 

 

Here 𝑓 denotes the objective function of the decision problem, and 𝐷 denotes the set of 

feasible solutions. 

 

Since the analytical solution of GO problems is not possible for a very large variety of 

model instances, our practical goal is to solve instances of problem (12) numerically. To 

this end, we shall assume that 𝐷 ⊂ 𝑅𝑛 is a bounded robust set (i.e., 𝐷 is the closure of a 

non-empty open set) and that 𝑓 is a continuous function. Under these basic conditions – 

by the classical theorem of Weierstrass – the set of global solutions to (12) is non-empty. 

We denote this set by 𝑋∗ , and remark that in many cases of practical relevance, 𝑋∗ 

consists of a single point 𝑥∗ , or possibly of several isolated points. For reasons of 



algorithmic tractability, it will be assumed that 𝑋∗ is at most countable. Introducing the 

notation 𝑓∗ = 𝑓(𝑥∗), to solve (12) theoretically means the following requirement: 

 

 “find all elements of 𝑋∗, and the function value 𝑓∗.” (13) 

 

In numerous cases, it can become very difficult – or even impossible − to solve (12) in 

the exact sense of (13).  Consequently, often numerical approximations of (13) need to be 

used.  A frequently stated approximate solution requirement is to find a feasible point x 

which yields an objective function value that is “sufficiently close” to 𝑓∗. Hence, our goal 

can be described as follows: 

 

 “find an 𝑥 ∈ 𝐷 such that 𝑓(𝑥) ≤ 𝑓∗ + 𝛿.” (14) 

 

In (14),  𝛿 > 0 is a tolerance parameter. 

 

To guarantee the numerical solvability of model (12) in the sense of (14) – on the basis of 

a finite set of algorithmically generated search (sample) points from 𝐷  – we need to 

postulate also some quantified analytical property of 𝑓  that is valid over 𝐷 . As an 

important example, the Lipschitz-continuity of 𝑓  is frequently postulated, when 

appropriate. That is, for all point pairs 𝑥1 and 𝑥2 from 𝐷, we assume the relation 

 

 |𝑓(𝑥1)– 𝑓(𝑥2)| ≤  𝐿||𝑥1– 𝑥2||. (15) 

 

In (15), 𝐿 = 𝐿(𝑓, 𝐷) is a suitable Lipschitz constant of 𝑓 that is valid over the set 𝐷 . 

Inequality (15) guarantees that the possible “variability” of function 𝑓  is uniformly 

controlled by the respective changes of its argument. The Lipschitz assumption is met, 

for instance, by all continuously differentiable functions 𝑓 defined over the compact set 

𝐷. However, the best (minimal) value of 𝐿 is typically unknown and to find it would 

require the numerical solution of another GO problem: hence, in practice suitable values 

of 𝐿 typically need to be estimated based on the generated search points. 

 

In many practical applications of optimization, 𝐷 is defined by explicit, finite lower and 

upper bound vectors 𝑙𝑏  and 𝑢𝑏  regarding 𝑥 , and by a finite number of additional 

continuous or Lipschitz-continuous constraints; that is, 

 

 𝐷 = {𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏, 𝑔𝑖(𝑥) ≤ 0 for 𝑖 = 1, . . . , 𝑚}. (16) 

 

Obviously, in (16) all bound constraints and inequality constraints are to be interpreted 

component-wise (while in model (11) we considered bound and general constraints 

individually, in order to provide a detailed description). To maintain a simple 

standardized notation, all general inequality constraints are considered in the form 

𝑔𝑖(𝑥) ≤ 0 as shown by (16). (All inequality constraints can be simply (re)written in this 

form, and equality constraints can be replaced by a pair of inequality constraints.) 

 

3.2 The LGO Solver System for Global-Local Nonlinear Optimization 

 



Within the general modeling framework outlined in Section 3.1, the LGO software 

package is aimed at finding the numerical global optimum of model instances from a very 

general class of continuous global optimization problems. LGO has been in use since the 

early 1990s, and it has been documented in detail by other publications and technical 

reports. In particular, Pintér (1996) presents a theoretical exposition of adaptive 

deterministic partition strategies and stochastic search methods to solve global 

optimization problems under continuity or Lipschitz-continuity assumptions. The 

exhaustive search capability of such algorithmic procedures guarantees their theoretical 

global convergence. Various implementation aspects and a range of application areas 

with detailed case studies are also discussed in the book. 

 

The core solver system in LGO with implementations for various modeling platforms has 

been described by Pintér (1996, 1997, 2002, 2005, 2007, 2009), Pintér et al. (2006). For 

more recent development work including benchmarking studies, consult e.g. Çaĝlayan 

and Pintér (2013), Pintér and Horváth (2013), Pintér and Kampas (2013), Pintér (2014). 

Further technical details are discussed by the current LGO manual (Pintér, 2016), which 

includes a fairly extensive list of topical references. Therefore here we present only a 

very brief summary of key LGO features and implementation details pertinent to this 

work. 

 

The core (Fortran or C/C++/C# compiler platform based) LGO solver suite seamlessly 

integrates several derivative-free global and local optimization strategies, without 

requiring higher-order (gradient or Hessian) information. The strategies referred to 

include regularly spaced sampling, as a global presolver (RSS); a branch-and-bound 

global search method (BB); global adaptive random search (GARS); Multi-start based 

global random search (MS); and local search (LS). According to extensive numerical 

experience, in complicated GO models, MS (with added LS solver phases) often finds the 

best numerical solution. For this reason, MS is the recommended default LGO solver 

option that has been used also in our present numerical study. 

 

3.3 MathOptimizer Professional 

 

LGO has been made available for a number of model development platforms as a 

(commercial) solver option: these platforms currently include AMPL, GAMS, MPL, 

Excel, Maple, Mathematica and Matlab. Similarly to our earlier circle packing studies, 

the ellipse packing model has been implemented in Mathematica (Wolfram Research, 

2015): therefore we use here the LGO implementation linked to Mathematica. This 

implementation, with the software product name MathOptimizer Professional, has been 

extensively used also in our benchmarking studies: cf. e.g. Pintér and Kampas (2013). 

Again, we only summarize the key features of this software that are relevant for the 

present discussion, and refer for further details to the works cited earlier, as well as to the 

current MathOptimizer Professional documentation (Pintér and Kampas, 2015). This 

user’s guide is a “live” (fully interactive) Mathematica notebook document with readily 

executable examples. 

 



The MathOptimizer Professional software package combines Mathematica’s powerful 

optimization model development capabilities with the external LGO solver suite. To 

emphasize this point, let us remark that the entire ellipse packing model and its solution 

consist “only” of about 50 carefully crafted Mathematica code lines including the code 

for displaying the ellipse configurations found. MathOptimizer Professional 

automatically transforms optimization models formulated in Mathematica into C or 

Fortran code (whenever this is possible): this translated model is handed over directly to 

LGO for solution. Following a seamless optimization model compilation, linking, and 

execution procedure, the optimization results are directly returned to the calling 

Mathematica document. This approach can lead to a significant program execution 

speedup when compared to native optimization in Mathematica: the speedup becomes 

increasingly more noticeable for larger models. We also note that the core LGO solver 

performance compares favorably to the corresponding solver features of Mathematica. 

MathOptimizer Professional can be used to handle sizeable models, currently with 

thousands of variables and general constraints. 

 

 

4 Illustrative Numerical Results 

 

To our best knowledge, there are no previously studied model instances available for the 

general ellipse packing problem considered in our present work. The problem instances 

summarized in Table 1 are taken from Kallrath and Rebennack (2014) – recalling that 

their work was aimed at packing ellipses in optimized rectangles. This choice of tests 

instances allows comparisons regarding the packing density of rectangular vs. circular 

packings (not in a competitive sense, since the configuration geometries are different). 

 

Our calculations were performed on a PC with a quad-core Intel i7 processor running at 

3.7 GHz, with 16 GBytes of RAM, using MathOptimizer Professional running in 

Mathematica version 10, and using the GCC compiler to generate the files for LGO. 

 

Table 1. Ellipse packing instances  

Test 

case 
(𝑎𝑖, 𝑏𝑖) Total area to 

be packed 

ax2a (2.0,1.5), (1.5,1.0) 14.13717 

ax2b (2.0,1.5), (1.8,1.4) 17.34159 

ax3a ax2a + (1.0,0.8) 16.65044 

ax3b ax2b + (0.8,0.7) 19.10088 

ax4a ax3a + (0.9,0.75) 18.77102 

ax4b ax3b + (1.1,1.0) 22.55664 

ax5a ax4a + (0.8,0.6) 20.27898 

ax5b ax4b + (0.9,0.8) 24.81858 

ax6 ax5a + (0.7,0.3) 20.93872 

ax11 (2.0,1.5), (1.8,1.5), (1.6,1.5), (1.5,1.2), 

(1.3,1.0), (1.2,0.9), (1.1,0.8), 

(1.0,0.75), (0.9,0.6), (0.8,0.5),(0.7,0.3) 

47.31239 

ax14 7 ∙ (1.0,0.75) + 7 ∙ (0.5,0.375) 20.6167 



 

Table 2 summarizes the computational results, noting that CPU times are reasonable even 

for the last two (largest) problem instances. Note that Table 2 also includes the packing 

fraction and the maximum constraint violation. In Table 3, we summarize our results for 

general ellipse packings in an optimized circle next to the best solutions found for 

packings in an optimized rectangle given by Kallrath and Rebennack (2014). As 

mentioned, the configuration geometries are rather different given the different optimized 

containers; but we still get an overall impression regarding the sort of packing densities 

that can be achieved for rectangles and circles, for a range of model instances. 

 

Table 2. Ellipse packing results 

Test 

case 

Packing 

radius 

𝑟𝑐 

Area of 

optimized 

container 

Packing 

fraction 

Time (sec) Max 

constraint 

violation 

ax2a 2.49873 19.61501 0.72073 0.5 8E-9 

ax2b 2.9 26.42079 0.65636 0.6 1E-9 

ax3a 2.56257 20.63010 0.80709 1.0 5E-10 

ax3b 2.9 26.42079 0.72295 1.0 5E-10 

ax4a 2.74972 23.75346 0.79024 3.1 4E-9 

ax4b 2.98985 28.08333 0.80320 3.0 5E-9 

ax5a 2.84911 25.50165 0.79520 7.6 3E-12 

ax5b 3.26085 33.40500 0.74296 7.7 9E-9 

ax6 2.89647 26.35651 0.79444 20.0 4E-9 

ax11 4.35292 59.52662 0.79481 31.0 5E-10 

ax14 2.864 25.76890 0.80006 106.0 1E-7 

 

Table 3. Packing results in a circle and packing results in a rectangle 

Test 

case 

Circular container  Rectangular container 

Area of 

optimized 

container 

Packing 

fraction 

Area of 

optimized 

container 

Packing 

fraction 

ax2a 19.61501 0.72073 18.00000 0.78540 

ax2b 26.42079 0.65636  22.23152 0.78005 

ax3a 20.63010 0.80709  21.38577 0.77858 

ax3b 26.42079 0.72295  25.22467 0.75723 

ax4a 23.75346 0.79024  23.18708 0.80955 

ax4b 28.08333 0.80320  28.54159 0.79031 

ax5a 25.50165 0.79520  25.29557 0.80168 

ax5b 33.40500 0.74296  31.28873 0.79321 

ax6 26.35651 0.79444  25.51043 0.82079 

ax11 59.52662 0.79481  64.59177 0.73248 

ax14 25.76890 0.80006  29.65886 0.69513 

 

Illustrative packing configurations for the last two (largest) problem instances ax11 and 

ax14 are given in Figures 5 and 6, respectively. The points shown on the ellipses and 

optimizer container are the subsidiary points for preventing ellipse overlap and 



determining the radius of the circumscribing circle. Note that for preventing the overlap 

of a pair of ellipses, there is only a point on one of the two ellipses, not on both. 

 

 
Figure 5. Packing for configuration ax11 

 



 
Figure 6. Packing for configuration ax14 

 

 

5 Summary and Conclusions 

 

In this study, we considered the general ellipse packing problem with respect to an 

optimized circle container with minimal radius. Our review of the related literature, even 

if not all works cited here aim at handling the exact same problem-type, illustrates the 

significant difficulty of similar packing problems. 

 

One of our key contributions is the modeling and enforcement of constraints that fall into 

two groups. The first group represents the constraints that keep the ellipses inside the 

circumscribing circle and prevent them from overlapping. (Recall that preventing ellipse 

overlap depends on both the orientation of the ellipses and the location of their centers.) 

The second group represents the equations generated by the embedded Lagrange 

multiplier conditions. In our global optimization strategy, preventing ellipse overlaps 

proceeds simultaneously with the minimization of the radius of the circumscribing circle. 

We applied the LGO solver system for global-local nonlinear optimization (with the 

software product name MathOptimizer Professional) in an implementation linked to the 

computing system Mathematica. Our results demonstrate that the embedded Lagrangian 



multipliers based modeling approach combined with global optimization enables the 

computational solution of difficult ellipse packing problems with several hundred 

variables and general non-convex constraints. Preliminary further work indicates that our 

new model formulation approach has the potential to extend to ellipse packing problems 

in other types of container sets. 
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